Accelerometers
An accelerometer is an electromechanical device that will measure acceleration forces. These forces may be static, like the constant force of gravity pulling at your feet, or they could be dynamic which is caused by moving or vibrating the accelerometer.
Some accelerometers use the piezoelectric effect in which they contain microscopic crystal structures that get stressed by accelerative forces, which causes a voltage to be generated. Another way to do is by sensing changes in capacitance. If you have two microstructures next to each other, they have a certain capacitance between them. If an accelerative force moves one of the structures, then the capacitance will change. Add some circuitry to convert from capacitance to voltage and you will get accelerometer.
Accelerometer can produce either analog or digital outputs. Analog style accelerometers output a continuous voltage that is proportional to acceleration. e.g 2.5V for 0g, 2.6V for 0.5g, 2.7V for 1g. Digital accelerometers usually use pulse width modulation (PWM) for their output. This means there will be a square wave of a certain frequency, and the amount of time the voltage is high will be proportional to the amount of acceleration.
There are two common types of accelerometer, the seismic mass type and the piezoelectric accelerometer. The seismic mass type accelerometer is based on the relative motion between a mass and the supporting structure. The natural frequency of the seismic mass limits its use to low to medium frequency applications. The piezoelectric accelerometer, however, is compact and more suitable for high frequency applications.
Return to main Sensors page
Resources
Featured Articles
- Accelerometer and Gyroscopes Sensors: Operation, Sensing, and Applications
- MEMS Accelerometer Performance Comes Of Age
- The Five Motion Senses: MEMS Inertial Sensing to Transform Applications
- Industrial IoT Sensing and Measurement: the Edge Node
- MEMS and Sensors Smart Motion tracking, IoT and enhanced user experience
- Capacitive MEMS accelerometer for condition monitoring
Applications Notes
- Getting Started with KXCJ9 and KXCJB tri-axis accelerometers
- Getting Started with KX112 tri-axis accelerometers
- LIS302DL 3-Axis Digital MEMS Accelerometer Translates Finger Taps into Actions
- Parameters and Calibration of a Low-g 3-Axis Accelerometer
- LIS2DH12: MEMS Digital Output Motion Sensor Ultra-Low-Power High-Performance 3-axis ""nano"" Accelerometer"
- Accelerometer and Gyroscope Design Guidelines
Videos
Ultralow Power MEMS Accelerometer Enables Asset Health Detection
Advanced Digital Ultralow Power MEMS Accelerometers
Advanced Digital Ultralow Noise MEMS Accelerometers
В настоящий момент невозможно указать договорные цены. Указанные цены являются стандартными розничными ценами, договорные цены будут применены при обработке размещенных заказов.
Номер по каталогу производителя | Код заказа | Производитель / описание | Наличие | Цена за | Цена | Количество | Функция МЭМС Модуля | Стиль Корпуса Микросхемы Датчика | Минимальное Напряжение Питания | Максимальное Напряжение Питания | Количество Выводов | Диапазон Ускорения | Диапазон Гироскопа | Минимальная Рабочая Температура | Максимальная Рабочая Температура | Линейка Продукции | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MPU-6050
|
1864742 |
GYRO / ACCEL, 6-AXIS, I2C, QFN-24 TDK INVENSENSE
Вы ранее приобрели этот товар.
Просмотр истории заказов
|
Снято с производства |
Штука (Поставляется на разрезной ленте)
|
null | Трехосевой Гироскоп, Трехосевой Акселерометр | QFN | 2.5В | 3.6В | 0 | 24вывод(-ов) | ± 2g, ± 4g, ± 8g, ± 16g | ± 250°/с, ± 500°/с, ± 1000°/с, ± 2000°/с | -40°C | 85°C | - | ||
MMA8451QT
|
1842359 |
ACCELEROMETER, 14/8BIT, 3AXIS, 16QFN NXP
Вы ранее приобрели этот товар.
Просмотр истории заказов
|
Снято с производства |
Штука
|
null | - | QFN | 1.95В | 3.6В | 0 | 16вывод(-ов) | ± 2g, ± 4g, ± 8g | - | -40°C | 85°C | - |